Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 237, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904147

RESUMO

BACKGROUND: Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS: We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS: Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.


Assuntos
Ascomicetos , Verticillium , Melaninas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium/genética , Dedos de Zinco , Doenças das Plantas/microbiologia
2.
J Fungi (Basel) ; 9(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108943

RESUMO

European hornbeam (Carpinus betulus L.) is widely planted in landscaping. In October 2021 and August 2022, leaf spot was observed on C. betulus in Xuzhou, Jiangsu Province, China. To identify the causal agent of anthracnose disease on C. betulus, 23 isolates were obtained from the symptomatic leaves. Based on ITS sequences and colony morphology, these isolates were divided into four Colletotrichum groups. Koch's postulates of four Colletotrichum species showed similar symptoms observed in the field. Combining the morphological characteristics and multi-gene phylogenetic analysis of the concatenated sequences of the internal transcribed spacer (ITS) gene, Apn2-Mat1-2 intergenic spacer (ApMat) gene, the calmodulin (CAL) gene, glyceraldehyde3-phosphate dehydrogenase (GAPDH) gene, Glutamine synthetase (GS) gene, and beta-tubulin 2 (TUB2) genes, the four Colletotrichum groups were identified as C. gloeosporioides, C. fructicola, C. aenigma, and C. siamense. This study is the first report of four Colletotrichum species causing leaf spot on European hornbeam in China, and it provides clear pathogen information for the further evaluation of the disease control strategies.

3.
Front Plant Sci ; 13: 933484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845688

RESUMO

Cyclocarya paliurus is an endemic Chinese tree species with considerable medicinal, timber, and horticultural value. The anthracnose disease of C. paliurus is caused by the fungal pathogen Colletotrichum fructicola, which results in great losses in yield and quality. Here, resistance evaluation of six cultivars of C. paliurus exhibited varying degrees of resistance to C. fructicola infection, where Wufeng was the most resistant and Jinggangshan was the most susceptive. Physiological measurements and histochemical staining assays showed that the Wufeng cultivar exhibits intense reactive oxygen species accumulation and defense capabilities. A multiomics approach using RNA sequencing and metabolome analyses showed that resistance in C. paliurus (Wufeng) is related to early induction of reprogramming of the flavonoid biosynthesis pathway. In vitro antifungal assays revealed that the flavonoid extracts from resistant cultivars strongly inhibited C. fructicola hyphal growth than susceptible cultivars. Relative gene expression analysis further demonstrated the pivotal antifungal role of C. paliurus flavonoids in targeting Colletotrichum appressorium formation. Together, these results represent a novel resistance mechanism of C. paliurus against anthracnose through the reprogramming of flavonoids, which will lay a foundation for breeding anthracnose-resistant varieties and the application of flavonoid extraction of C. paliurus as a natural antifungal treatment.

4.
Front Plant Sci ; 13: 822340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178062

RESUMO

The "Spring-red-leaf" crabapple cultivar has young red leaves and mature green leaves. However, the mechanism of anthocyanin biosynthesis in crabapple leaves in spring remains unknown. In this study, Illumina RNA sequencing (RNA-Seq) was performed on Malus 'Radiant' leaf tissues in different stages of development. Twenty-two genes in the anthocyanin biosynthesis pathway and 44 MYB transcription factors (TFs) were significantly enriched among differentially expressed genes (DEGs). Three R2R3-MYB TFs in subgroup 22 of the MYB TF family, MrMYB44-like1, MrMYB44-like2, and MrMYB44-like3, were highly expressed in green leaves according to RNA-Seq and quantitative real-time quantitative PCR results. Their expression levels were negatively correlated with anthocyanin content. In transient assays, overexpression of MrMYB44-like1, MrMYB44-like2, or MrMYB44-like3 inhibited anthocyanin accumulation and reduced pigment in leaf disks of M. 'Radiant' and fruit peels of M. domestica 'Fuji.' When the conserved region of the three MrMYB44-likes was silenced, the anthocyanin biosynthesis pathway was activated and pigments increased in both tissues. Moreover, bimolecular fluorescence complementation assays showed MrMYB44-likes interacted with MrWRKY6 to form protein complexes that regulated anthocyanin biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...